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Abstract

This review is written to encourage more theoretical efforts on muon anomalous magnetic

moment aµ, particularly the Hadron Vacuum Polarisation (HVP) contribution, under

Fermilab’s recent announcement in 2021 April where an exacerbated 4.2σ deviation is observed

between Standard Model theory and experiment. Current Lattice QCD methods including

Hybrid Method and Time-Momentum Representation are established for HVP computation at

leading order, and individual quark flavor contributions are examined along with their issues

and remedies. Results for total aHV P,LOµ and flavor-specific contributions are compared between

different lattice groups, and between lattice vs phenomenological routines. It is evident that

current lattice study must be improved to a permile level precision to confront its

phenomenological/experimental counterparts, and the focus shall be placed upon the

improvement of statistical noise in dominant light-quark connected contribution.
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1 Introduction

1.1 Muon g − 2

Muon anomalous magnetic moment, denoted as aµ, is one of the most delicate probes of new

physics beyond Standard Model (SM), itself among the most precise quantities ever measured.

The subject has earned considerable attention since 2004, the tantalizing E821 experiment result

that is 3.2σ away from SM prediction [13]. In 2021 April, Fermilab announced its 1st run result -

4-fold improved in precision, when combined with E821 result a striking 4.2σ deviation from SM

theory is observed. This exacerbated tension has urged investigation from both sides. While new

experiments are planned at Fermilab and J-PARC, theoreticians are aiming to improve current

theory from percent level to permile level for more a reliable SM prediction. One of such effort

includes improving hadron vacuum polarisation contribution with lattice method, the subject of

this review.

Muon magnetic moment µ can be written as:

µ = g
e

2mµ
S

where g is the g-factor, predicted to be exactly 2 by Dirac’s equation in quantum mechanics.

However, quantum field theory suggests loop corrections that add onto the quantum mechanical

prediction, hence g 6= 2. aµ is defined as the fractional deviation of g from 2,

aµ =
g − 2

2

This is where the name ‘g − 2’ comes from.

Standard model predicts three types of loop corrections from Quantum Electrodynamics (QED),

Electroweak theories (EW), and Quantum Chromodynamics (QCD) respectively, visualized in

Figure 1. Formulated as

aSMµ = aQEDµ + aEWµ + aQCDµ

a recent result [1] is quoted below:

aSMµ = 116591810(43)× 10−11

with

aQEDµ = 116584718.931(104)× 10−11

aEWµ = 153.6(1.0)× 10−11

aQCDµ = 6923.7(53.4)× 10−11

aQCDµ has contribution from both hadron vacuum polarisation (HVP), the subject of this

review, and hadron light by light scattering (HLbL), another important contribution that is

thoroughly discussed in Section 4 and 5 in [1]:

aQCDµ = aHV Pµ + aHLbLµ
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Figure 1: Example Feynman diagrams of all the contributions to g factor. The

Dirac diagram is at the lowest level, giving g = 2. The rest are at one-loop level,

involving a virtual photon (QED), virtual Z/W± (EW), or virtual hadron (QCD),

giving the deviation from 2, aµ. Diagrams in this figure are merely examples

among all the possible diagrams that are not shown. Reprinted, see original source.

Figure 2: Pie charts displaying weight of different contributions in

aSMµ and theoretical uncertainty. Reprinted, see original source.

The importance of QCD contribution, particularly HVP, is exemplified by the relative weight

of different contributions as shown in Figure 2: Although aQEDµ dominates in aµ, theoretical

uncertainties almost exclusively come from aQCDµ , and uncertainties from aHV Pµ account for 70%.

The high precision in QED and eletroweak parts is attributed to their perturbative construction,

which is not completely plausible for QCD due to its non-perturbative features (i.e. color confine-

ment). Therefore, to improve the SM estimation, one would necessarily confront the challenge of

computing aHV Pµ , the term dominating theoretical uncertainties.
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1.2 Theoretical Efforts in HVP

aHV Pµ can be either computed with data-driven method, or lattice method.

Data-driven method This method is based on a dispersive integral, i.e. at leading order (LO)

aHVP,LO
µ =

1

4π3

∫ ∞
M2
π

K(s)σ0
(
e+e− → hadrons(+γ)

)
ds (1)

where the e+e−cross-section data σ0 comes from experiments. K(s) is a kernel function. (See

[1]) Therefore, this method is also termed as ‘dispersive method’ or ‘phenomenology method’

in literature. To compute the integral, cross-section of all the possible decay channels must be

summed over. Alternative routine using τ decay cross-section is also possible, but is so far not

precise enough for aHV Pµ prediction. With this method, it’s possible to compute aHV P,NLOµ (next

leading order) and aHV P,NNLOµ (next-next leading order) with HVP iteration. See [1] for more

details.

Lattice method This method features QCD calculation on a set of discretized spacetime points

and extrapolation to continuum limit, shown in Figure 3. One can construct a 3+1 dimension

spacetime lattice, quarks placed on lattice points with gluons connecting them like ‘springs’,

resembling a crystal lattice.

Figure 3: Graphic illustration of lattice QCD, with lattice spacing, a,

and lattice size, L. Time dimension is not shown here. Reprinted, see

original source.

One computes aHV Pµ over this lattice and extrapolates the result to continuum, where the

lattice is infinitely large and unit cell infinitely small. This method is shorthanded as ‘LQCD’,

where ‘L’ stands for ‘lattice’. It computes up to aHV P,LOµ .

In this review, LQCD computations of aHV P,LOµ are established. Results are compared between

different lattice groups and between lattice vs. phenomenology. All quantities are quoted in

natural unit.
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2 LQCD Methods for aHV P,LOµ Computation

In this section, prevalent lattice methods for aHV P,LOµ evaluations (Hybrid Method and Time

Momentum Representation) are explained in general terms with their main issues and reme-

dies. See more theoretical details in the referred publication.

Computation of aHV P,LOµ usually involves the HVP integral. This integral can be either done in

Q2 space, where Q is the reciprocal wave vector analogous to that in solid state physics, or in x0

space, where x0 is time in 4-vector formalism. Correspondingly, Hybrid Method computes the

integral in Q2 space while Time Momentum Representation does so in x0 space.

2.1 Hybrid Method

The HVP integral is:

aHVP,LO
µ =

(α
π

)2 ∫ ∞
0

dQ2f
(
Q2
)

Π̂
(
Q2
)

(2)

where

f
(
Q2
)

=
m2
µQ

2Z3
(
1−Q2Z

)
1 +m2

µQ
2Z2

, Z = −
Q2 −

√
Q4 + 4m2

µQ
2

2m2
µQ

2

Π̂
(
Q2
)
≡ 4π2

[
Π(0)−Π

(
Q2
)]

Π(Q2) is the scalar vacuum polarisation tensor that can be constructed from electromagnetic

current correlator Cµν(x). [1]

The form of kernel f(Q2) suggests a divergence as Q2 −→ 0, which means the integrand peaks in

low Q2 region, signaling a difference in performance between low, intermediate, and high values

of Q2. The peak indicates dominance of low Q2 region. However, this Q2 region is far more noisy

compared to high Q2 region due to the finite size of lattice: analogous to a crystal lattice, the

smallest wavevector is restrained to be 2π
L by L, the length of lattice. Q < 2π

L cannot be reached

by lattice data. One has to extrapolate data into the unreachable region, introducing statistical

and systematic uncertainties. Contrarily, high Q region can be very precisely determined pertur-

batively without lattice method.

The most important region being the least precise, the Hybrid Method was proposed to address

this issue. It’s a ‘mixed’ strategy that optimizes the computation by adopting different methods

for different Q regimes. Two cuts are introduced at Q2
low ≈ 0.1Gev2 and Q2

high ≈ 8Gev2. The
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integral is split into 3 parts:

aHVP,LO
µ = I0 + I1 + I2

I0 =
(α
π

)2 ∫ Q2
low

0

dQ2f
(
Q2
)
× Π̂

(
Q2
)

I1 =
(α
π

)2 ∫ Q2
high

Q2
low

dQ2f
(
Q2
)
× Π̂

(
Q2
)

I2 =
(α
π

)2 ∫ ∞
Q2

high

dQ2f
(
Q2
)
× Π̂pert

(
Q2
)

(3)

I0 covers the problematic low Q2 region, and is approximated by either fitting polynomials or

time moments (see Section 2.1.1 and 2.1.2). I1 covers the intermediate Q2 region which can

be precisely calculated with lattice data and numerical integration. I2 covers the high Q2 region,

computed with perturbation theory.

Figure 4: Illustration of hybrid method, with typical value of Q2
low

and Q2
high. Reprinted from [1].

In general, the idea of a ‘hybrid strategy’ is very commonly used to address the variation in data

performance across the interested region. This idea can also be seen in the Window Method

(Section 2.2.1) and the design of MUonE project (Section 5).

2.1.1 Fitting Polynomials

As mentioned before, the most problematic part of the integral is I0 for it being dominant but very

uncertain. Analytic approximations are proposed to describe
∏

(Q2) in low Q2 region, including

Padé functions [4] which states:

Π[N,M ]

(
Q2
)

= Π(0) +

∑N
i=1 aiQ

2i

1 +
∑M
i=1 biQ

2i
(4)

and conformal polynomials [12] which states:

ΠN

(
Q2
)

= Π(0) +

N∑
i=1

piw
i, w =

1−
√

1 + z

1 +
√

1 + z
, z = Q2/4M2

π . (5)
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Coefficients are found by fitting lattice data. To improve the stability of the fitting functions, one

can supplement them with derivatives of Π(0), estimated from either numerical differentiation or

time moments.

2.1.2 Time Moments

Time moments [8] is analogous to Taylor expansion, hence are sometimes referred to as ‘Taylor

coefficients’. The essential idea is to expand Π(Q2) in terms of power of Q2 (just like Taylor

series), with the ‘Taylor coefficients’, namely the time moments, directly related to EM current

correlator as shown below:

Π
(
Q2
)

= Π0 +

∞∑
n=1

ΠnQ
2n

where

Π0 = Π(0) = −1

2
G2, Πn =

(−1)n+1

(2n+ 2)!
G2n+2

G2n ≡
∫ ∞
−∞

dx0x
2n
0 C (x0)

C (x0) = −1

3

3∑
k=1

∫
d3xCkk(x)

Ckk(x) is the contraction of EM current correlator Cµν(x) mentioned previously. Πn is the nth

time moment.

The advantages of computing time moments includes:

1. They can be used to construct Padé approximant or other approximants.

2. They are an intermediate result that can be used for comparison between different lattice

groups, allowing for uncertainty investigation and cross checking.

3. They can also be constructed from experimental data, enabling comparison between data-

driven method and lattice method.

2.2 Time Momentum Representation

Instead of doing the integral in Q2 space, one can take Qµ = (ω, 0, 0, 0) and write the integral

alternatively as:

aHVP,LO
µ =

(α
π

)2 ∫ ∞
0

dx0C (x0) f̃ (x0) (6)

which is an integral in Euclidean time. f̃ (x0) is a kernel function of form

f̃ (x0) = 8π2

∫ ∞
0

dω

ω
f
(
ω2
) [
ω2x20 − 4 sin2

(ωx0
2

)]
This method is usually shorthanded as ‘TMR’. [5]
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The first issue arises due to the finite size of lattice again. Since the spacetime lattice is fi-

nite, the data it yields cannot reach infinite time. Therefore, beyond the furthest x0 data point,

one needs to extend the correlator into infinite time via approximation:

C (x0) =

∞∑
n=1

Ane−Enx0 (7)

En is the energy of eigenstate |n〉 of the system. An is a matrix element associated with EM cur-

rent. Eq. (7) is general form, and the specific form is model dependent. Since C(x0) depends on

which eigenstates are present, detailed spectroscopic study must be conveyed to obtain a precise

approximation.

The point xcut0 at which one starts to replace correlator data with Eq. (7) is not only limited

by the size of lattice, but also the deterioration of Signal-to-Noise ratio (StN) at large x0. This

is the second issue with TMR: the relative statistical uncertainty increases exponentially as x0

increases, which brings down the precision. Thus, xcut0 shall be neither too large for the over-

whelming statistical noise to degrade the precision before reaching the cut, nor too small for the

model dependence of correlator extrapolation to introduce extra uncertainties. Practically, xcut0

is set to be ≥1.2 fm.

Figure 5: Illustration of time cut, as well as the methods adopted

before and beyond cut.

2.2.1 Window Method

The aforementioned x0-dependence of correlator performance encourages a ‘splitting’ of aHV P,LOµ

into short (time) distance, intermediate ‘window’, and long distance parts, proposed by RBC/UKQCD

collaboration[6]:

aHVP,LO
µ = aSDµ + aWµ + aLDµ

aSDµ =
(α
π

)2 ∫ ∞
0

dx0C (x0) f̃ (x0) [1−Θ (x0, t0,∆)]

aWµ =
(α
π

)2 ∫ ∞
0

dx0C (x0) f̃ (x0) [Θ (x0, t0,∆)−Θ (x0, t1,∆)]

aLDµ =
(α
π

)2 ∫ ∞
0

dx0C (x0) f̃ (x0) Θ (x0, t1,∆)

(8)
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where

Θ (t, t′,∆) = [1 + tanh [(t− t′) /∆]] /2

Parameter ∆ is used to smooth the boundaries, often set to be 0.15 fm. t0 and t1 define the

boundaries of ‘short distance’ and ‘long distance’, taking values around 0.4 fm and 1.0 fm re-

spectively. aSDµ is subjected to short distance effect such as discretization effect, while aLDµ is

sensitive to the StN problem at long distance. In contrast, the intermediate window part aWµ is

not as affected as these two, hence can be very precisely determined with lattice method.

Figure 6: Illustration of window method.

Similar to hybrid method, Window Method suggests a ‘hybrid’ way to determine aHV P,LOµ by

keeping the precise lattice computation of intermediate window while replacing the problematic

aSDµ and aLDµ with data-driven computations, which gives a final result more precise than using

LQCD or data-driven method alone.

The advantages of window construction includes:

1. They are an intermediate result that can be used for comparison between different lattice

groups, just like time moments.

2. They can also be constructed with experimental R-ratio data via

C (x0) =
1

12π2

∫ ∞
0

d(
√
s)R(s)se−

√
sx0

and substitution back to Eq. (6). This allows comparison and even combination of lattice

and data-driven method.

Concluding this section, the two routines described above are essentially the same apart from

integrating over different domains. However, this means that if the statistical uncertainty presents

in one method, it manifests as well in the other. In fact, as mentioned TMR suffers a statistical

noise at large Euclidean time, and this issue manifests in time moments too where one loses

statistical precision in higher order time moments (as n increases for Πn).
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3 Individual Quark Contributions in aHV P,LOµ

For hadron vacuum polarization, two types of Feynnman diagrams are available: quark-line

connected (quark connected) and quark-line disconnected (quark disconnected). [14]

Figure 7: Cartoon depicting connected and disconnected contribution.

In a connected diagram, a pair of virtual quarks is generated and

annihilates into a photon, whereas in a disconnected diagram the virtual

quark pair annihilates into gluons. Reprinted from [14]

The quark connected contribution can be decomposed into individual quark contributions since

the EM current correlator sums over all quark flavors. [1]This means we can write

aHVP,LO
µ = aHVP,LO

µ,conn + aHVP,LO
µ,disc (9)

and

aHVP,LO
µ,conn = aHVP,LO

µ (ud) + aHVP,LO
µ (s) + aHVP,LO

µ (c) + aHVP,LO
µ (b), (10)

Therefore, to obtain total quark connected contribution, one computes individual quark contribu-

tions and sums up all. In practical, different quark flavors have different statistical and systematic

uncertainties, hence must be computed separately. The quark disconnected contribution must

also be evaluated for total aHV P,LOµ .

3.1 Methodology

Connected Contributions Connected contributions from different flavors can be found in

more or less the same way. Many lattice groups have adopted TMR method: one find the C(x0)

for one specific quark flavor, say f, and substitute it back to Eq. (6) to get the individual quark

connected contribution aHV P,LOµ,conn (f). For details, see [11]. Alternatively, for each quark flavor one

could find the time moments to construct Padé approximants, then do the HVP integral Eq. (2),

as explained in [8]. A combination of both routines is possible.

An important clarification needs to be made about the treatment of u and d quark - they are

treated together in isospin symmetry by all the lattice groups when calculating aHV P,LOµ , which

assumes they have identical mass. This is why in Eq. (10) they are combined into one single

contribution and termed as ‘light-quark contribution’. The effects caused by their physical dif-

ference in mass and charge are studied in ‘Isospin Breaking effects’ (IB), leading to a small yet

non-negligible correction around 7.2(3.4) × 10−10.[1] In this review, isospin symmetry mu = md

is assumed.
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Disconnected Contribution Usually, disconnected contribution is also computed with TMR.

One finds the electromagnetic current, performs Wick contraction to obtain the disconnected

correlator, then substitutes back into the HVP integral. A more detailed description of this

method can be found in Appendix D, [15].

3.2 Connected ud Contribution

The term aHV P,LOµ,conn (ud), or light-quark contribution, accounts for 90% of aHV P,LOµ,conn , hence is the

most important part. Meanwhile, it is also known to be notoriously noisy and suffering from

many uncertainties.

As mentioned, to compute this contribution, one could either adopt TMR or use time moments

and Padé approximants. The main lattice groups involved and the methods they adopted are

summarized in the table below [1]:

Method Group(s) involved

BMW

UKQCD

TMR ETM

Mainz

Aubin et al.

moments HPQCD

both Fermilab-HPQCD-MILC

Table 1: Groups computing light-quark contribution and their methods.

3.2.1 Issues and Remedies

The main issues with this calculation include statistical and systematic uncertainties. Sta-

tistical uncertainty is related to the ‘random noises’ in data, while systematic uncertainties are

artifacts of lattice configuration - finite size of lattice gives finite volume effect, and finite spacing

of lattice sites gives discretization effect.

Statistical uncertainty Statistical uncertainty mainly refers to the StN problem, where the

signal-to-noise ratio in correlator C(x0) deteriorates at large Euclidean time - a typical issue with

TMR. Those groups who employed time moments need to deal with the same issue but in a

different manifestation, as described at the end of Section 2.

Two types of remedies are proposed: ‘fitting’ and ‘bounding’. The ‘fitting’ solution is to replace

the noisy region with a fit based on smaller x0 data. Groups adopting this strategy include Mainz,
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ETM, HPQCD, and Fermilab. The replacement typically starts at 2-2.5 fm. The ‘bounding’

solution, instead of giving a prediction, introduces a cut xcut beyond which the data is replaced

with an upper and lower bound. xcut is usually around 3 fm. Groups adopting this strategy

include BMW, UKQCD, and Aubin et al.

Systematic uncertainty: finite volume effect Often short-handed as ‘FVE’, this is a lattice

artifact that is related to the size of lattice, L. It can be addressed with chiral perturbation theory

(ChPT) at NLO (next to leading order) and NNLO (next next to leading order). A systematic

study of FVE can be found in [11] and [10] where aHV P,LOµ,conn (ud) results are compared between

lattice configurations that are same except for lattice size. A detailed NLO calculation can be

found in [2] and a NNLO calculation is given in [3]. In fact, the NNLO contribution is not

negligible - it is roughly 50% of NLO contribution with the same sign.

Systematic uncertainty: discretization effect This mainly refers to an uncertainty that is

at order O(a), where a is the lattice spacing. It is an artifact coming from a finite lattice spacing.

Dependence on finite lattice spacing varies for different lattice formulations, thus one must study

this effect accordingly based on the specific lattice configuration involved. For this reason, its

origin will not be further elaborated here. It is usually treated with ChPT. To mitigate such

uncertainty, one may conduct a fitting as described in Appendix B, [7].

3.3 Connected s, c, b Contribution

aHV P,LOµ,conn (s) accounts for ∼ 8% of aHV P,LOµ,isosym, and aHV P,LOµ,conn (c) ∼2%. aHV P,LOµ,conn (b) contributes by

only 0.04%, which is nearly negligible at current precision level.

For b and c contribution, they don’t suffer FVE and StN problems as much as the ud case,

therefore the dominating uncertainty is discretization effect. Besides, since b and c data can be

easily extracted experimentally, they can be evaluated with data-driven method and compared

with the lattice result. Current lattice result agrees well with phenomenological ones.

For s contribution, the StN problem is slightly worse than b and c, but the correlator can still be

determined accurately at larger numerical cost. FVE effect is fairly small [8], hence the dominat-

ing uncertainty is discretization effect as well.

3.4 Disconnected Contributions

As mentioned in Section 3.1, disconnected contribution is usually done in TMR. However, it is

also possible to derive aHV P,LOµ,disc based on ChPT as mentioned in [9]. Its upper bound is found to

be 2% of the total aHV P,LOµ value, which means it is not negligible for a permile precision goal.
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The biggest challenge for this contribution comes from statistical noises. For more detailed

explanations and remedies, see [1].
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4 Results

4.1 Total aHV P,LOµ Results

Table 2: Summary of all the groups involved in the comparison and

their methodology. Nf indicates which quarks are included in the sea

quark setting of simulation: 2+1+1 all included, 2+1 c quark missing,

2 s and c both missing. ‘Fermion’ shows which specific model is

assumed for the fermions. [1]

Figure 8: Plot of results from previous table. Blue band indicates the

range of latest world average result. Green band refers to the zone

where theoretical results are consistent with experiments. [1]

Results from the recently active groups and their methodologies [1] are tabulated in Table 2,

including lattice groups and phenomenology groups (those working with data-driven method).
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Their results for total aHV P,LOµ is plotted in Figure 8.

Mainz/CLS-17, HPQCD-16 and ETM-13 are older efforts that have already been superseded.

They are consistent with each other, but are in mild tension with the most up-to-date results.

It is evident that results from BMW, RBC/UKQCD, and Mainz/CLS agree well, suggesting ‘no

new physics’ scenario. ETM and FHM results agree with each other, but are at 1σ tension from

BMW, RBC/UKQCD, and Mainz/CLS. PACS result is 1σ away from the three ‘no new physics’

results and 2σ from ETM and FHM. These six results are combined to form a ‘lattice world

average’,

aHV P,LOµ = 711.6(18.4)× 10−10

which is represented by the blue band. From the phenomenology side, data-driven results are

fairly consistent with each other, and they all lie on the border of blue band, indicating a mild

1σ tension between lattice and data-driven method.

From the graph, one also observes that the uncertainties reported by different lattice groups

are similar in order of magnitude, and they much larger than those of data-driven method. Thus,

the ‘mild’ tension between these two methods must be interpreted discreetly - it is probably not

a sign of agreement, but merely a consequence of the large uncertainty in lattice methods.

To summarize, lattice results are generally in agreement within a spread of 2σ, and a 1σ tension

is suspended between lattice and data-driven results. The most recent lattice world average is

found to be aHV P,LOµ = 711.6(18.4)× 10−10. Uncertainties in lattice method is around 2.6%, at

subpercent level, while data-driven method uncertainties is around 0.5%, at permile level. There-

fore, an improvement to permile precision is necessary for lattice method to form a conclusive

comparison with data-driven method.

4.2 Individual Quark Contribution Results

To investigate the deviation among total aHV P,LOµ results, it is instructive to compare the results

of individual quark contributions. Groups involved and their results [1] are tabulated and plotted

in Table 3 and Figure 9.

Light-quark Light-quark results display a spread similar to that of total results. Given the

dominance of this contribution, it’s likely to be the reason for the spread in total aHV P,LOµ . For

Nf = 2 + 1 + 1 configuration, a 1σ spread is seen. This is presumably caused by the different

strategies implemented to resolve the StN issue mentioned earlier.
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Table 3: Summary of individual quark results from different groups.

Figure 9: Plot of results from previous table. Blue band indicates the

range of latest world average result.

s and c For these two flavors, the Nf = 2 + 1 + 1 configuration results agree well. So are

Nf = 2+1 ones except for PACS. As mentioned, these two flavors suffer most from discretization

effect, and PACS has a lattice artifact at O(a) that is not seen in other groups, which explains

the deviation. Besides, the much larger uncertainty in ETM and Mainz results are statistical in

nature, and can be solved by further computational efforts.

Quark disconnected More results are required this computation. From the plot, current

results agree within 1σ, except for Mainz. This is due to one of the fit ansätze it adopted. See

[1].
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5 Conclusion and Outlook

In this review, lattice QCD calculation of hadron vacuum polarization has been established from

first principle. Comparison of total aHV P,LOµ results between different lattice groups and lattice

vs data-driven shows that:

1. Lattice results are in agreement, despite a spread of 2σ.

2. Data-driven method results are consistent with each other.

3. A mild tension exists between lattice and data-driven results. Lattice method must be

improved to permile level precision for future comparison.

Comparison between individual flavors reveals:

1. The spread in total aHV P,LOµ could be attributed to light-quark contribution, where the

spread is caused by different strategies to cope with StN problems.

2. More computational effort is needed for disconnected part.

These comparisons consolidated the necessity of a permile level precision goal. Future lattice work

shall proceed with a focus on lowering the statistical uncertainty in dominating ud contribution,

while improving the IB correction precision. It would be ideal if each lattice group can walk

through the routines of others and produce more results for comparison.

Last but not least, exciting intermix between lattice and phenomenological/experimental effort is

upcoming to bring more insights on the matter: phenomenologists may apply lattice method for

IB correction in their alternative τ decay routine, which might yield a result precise enough as

an independent check against current mainstream results. Moreover, a new experimental project

MUonE at CERN has been proposed to help measure the low Q2 region which bothers LQCD

studies. A hybrid mode of ‘experimental+LQCD+pertubation’ will optimize the uncertainty

budget and boost precision.

It is doubtless that after decades of theoretical, experimental, and phenomenological efforts, we

would expect the veil of new physics to be soon revealed upon muon g − 2, another forthcoming

triumph of physics.
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